SUBJECT INDEX

A	light sources, 305–307
Absorb & Shuttle, 303	manuscripts on, 297f
Acetaldehyde, 76, 302	mass transport, 304–305
Acetic acid, 75	mixtures, 312–314, 334
Acetonitrile, 7	modes of, 314–315
Acid Orange 7, 47, 77	monolith tubular reactor, 323
Acid Orange 24, 213	NOx, 312
Acrylic acid, 75	outdoor, 299
Acrylic windows, 242f	packed bed annular reactors,
Actinometry, 260, 263, 284	328–329
Activated carbon, 57, 304	packed bed reactors, 320-321
Activation step, 235	patents, 295–296
Adsorption-desorption equilibrium, 8	permeable layer annular reactors,
Advanced oxidation processes	329–330
(AOP), 294	permeable layer tubular reactors,
Agglomeration, 319	325–326
Air humidifier, 242f	photocatalysis for, 300-307
Air mass (AM), 121	plasma-driven packed bed reactor,
Air treatment	321–322
annular reactors, 326-330	powder layer tubular reactors,
applications, 297–300	316–318
batch reactors, 314–315	process gasses and, 299-300
BTEX in, 308–309	reaction kinetics, 301-304
coated wall annular reactors, 326-328	reactors for, 316-333
coated wall tubular reactors, 319-320	recirculation systems, 314-315
combined adsorptive-photocatalytic	standardization, 334
reactors, 332–333	target pollutants in, 307–314
continuous, one-pass flow	trichloroethylene in, 309-312
reactors, 315	visible light and, 333–334
current problems, 333–335	Aldehyde, 20, 44
deactivation, 335	Alizarin red, 48
dissolved pollutants and, 297, 300	AlTCPc. See Hydroxoaluminium-
flat plate reactors, 330	tricarboxymonoamide
fluidized bed annular reactors, 326	phthalocyanine
fluidized bed tubular reactors,	Alumina reticulate, 323
318–319	Aluminum hydroxide, 59
generalized models, 331-332	AM. See Air mass
indoor, 298	Angular variable, 220
	-

Anion doping, 128–129	irradiation, 19f
band structure, 130f	photoadsorption, 22–25
Annular lamp reactor, 222–224	photodegradation of, 18
Annular reactors, 326–330	unit mass, 24f
coated wall, 326–328	Bessel functions, 220
fluidized bed, 326	Best fitting procedure, 32
packed bed, 328–329	Biphenyls, 77
permeable layer, 329–330	Borosilicate glass tubes, 248f, 270
AOP. See Advanced oxidation processes	Boundary conditions, 245
Apparent quantum efficiency (AQE), 308	Marshak, 219, 224
AQ-1000, 179	RTE, 236
	Box-Draper technique, 302
AQE. See Apparent quantum efficiency	
AQ-Red dye, 179	BQ. See Benzoquinone
AQ-RF, 179	1,4-BQ. See 1,4-benzoquinone
Aqua regia, 53	BTEX, 299, 313, 325
Argon lamps, 306	as target pollutant, 308–309
Arsenic	Buchi Rotovapor M, 5
hetereogeneous photocatalysis, 58–61	Bulk recombination, 27
oxidation, 60	1-butanol, 56
pollution, 58	
titanium dioxide and, 59–60	C
toxicity of, 58	Calcination, 76
Avogadro's number, 200	Calomel, 52
	· · · · · · · · · · · · · · · · · · ·
	formation, 50
В	CAR. See Classical annular reactor
B Band structure	CAR. See Classical annular reactor
Band structure	CAR. See Classical annular reactor Carbaryl, 196
Band structure anion doping, 130f	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f
Band structure anion doping, 130f cation doping, 129f	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309 degradation rate, 157f, 159f	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol CdS, 140–141
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309 degradation rate, 157f, 159f Benzoquinone (BQ), 273	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol CdS, 140–141 photoactivity of, 141
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309 degradation rate, 157f, 159f Benzoquinone (BQ), 273 1,4-benzoquinone (1,4-BQ), 76	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol CdS, 140–141 photoactivity of, 141 Cellulose acetate filter, 7
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309 degradation rate, 157f, 159f Benzoquinone (BQ), 273 1,4-benzoquinone (1,4-BQ), 76 oxidation of, 90, 96t	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol CdS, 140–141 photoactivity of, 141 Cellulose acetate filter, 7 Centrifugal pump, 262f
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309 degradation rate, 157f, 159f Benzoquinone (BQ), 273 1,4-benzoquinone (1,4-BQ), 76 oxidation of, 90, 96t Benzyl alcohol, 4, 5, 6	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol CdS, 140–141 photoactivity of, 141 Cellulose acetate filter, 7 Centrifugal pump, 262f CFD, 168–169, 172, 266, 330, 331–332
Band structure anion doping, 130f cation doping, 129f of photocatalyst composite, 130f, 131f Band-gap energy, 115 of semiconductors, 126f Band-gap engineering, 128–131 anion doping, 128–129 cation doping, 128–129 Batch reactors, 314–315 Beam solar radiation, 221f Benzaldehyde, 309 Benzene, 298, 313–314 Benzene dicarboxaldehyde, 309 Benzoic acid, 309 degradation rate, 157f, 159f Benzoquinone (BQ), 273 1,4-benzoquinone (1,4-BQ), 76 oxidation of, 90, 96t	CAR. See Classical annular reactor Carbaryl, 196 in CPC reactors, 209f evolution of, 209f Carbon dioxide, 20, 21, 304 kinetic modeling and, 98–104 Carbon tetrachloride, 148 Carboxylic acid, 56, 85, 99 Cat, 2 Catalyst elemental analysis, 80–81 Catechol, 20 Cathodic pathway, 39–40 Cation doping, 128–129 band structure of, 129f CB. See Conduction band 4-CC. See 4-chlorocatechol CdS, 140–141 photoactivity of, 141 Cellulose acetate filter, 7 Centrifugal pump, 262f

Chemical reactions, initiating, 2	concentrating, 198, 206–210
Chemical reactors, design, 2	cross section, 207f
Chemisorption, 15	design, 197
Chlorine, 59, 239, 310–311	geometries, 205f
4-chlorocatechol (4-CC), 267, 273, 275f	geometry of, 198f
concentrations, 279	multiple, 208f
experimental concentrations, 280f	nonconcentrating, 198–199
in heterogeneous photocatalysis,	optical systems, 197f
283–284	photoreactor, 195f, 196–199
predicted concentrations, 280f	reflectors, 199f
Chloroform, 148	test bed, 208f
4-chlorophenol (4-CP), 48, 196, 267,	truncation of suns, 199f
273, 275f	tubular receiver, 197–198
concentrations, 279	Conduction band (CB), 115
conversions, 286	electrons, 38
degradation of, 268f	Conductivity, 218
experimental concentrations, 280f	Constants
experimental conversions, 285f	intrinsic kinetic, 93
in heterogeneous photocatalysis,	photoadsorption equilibrium, 13
283–284	pseudo-first-order rate, 12
kinetic parameters, 279t	Temkin equilibrium absorption, 32
predicted concentrations, 280f	wavelength-dependent, 218
predicted conversions, 285f	Constrained relationships, 94-95
reaction pathway, 268f	Continuous, one-pass flow reactors, 315
Chromium, 39	Continuous stirred tank (CST), 80, 315
heterogeneous photocatalysis	Copper, 39
and, 44–49	4-CP. See 4-chlorophenol
net reaction for, 45	CPC. See Compound parabolic collectors
photocatalytic reaction, 45–46	CREC
photocatalytic reduction, 45, 47	advances in, 78–79
photoreduction of, 73	catalyst elemental analysis, 80–81
titanium dioxide and, 48	EDX and, 80–81
Circulation rates, in water	experimental methods used in, 79–81
purification, 153	iron analysis, 80
Citrate, 52	model pollutant analysis, 80
Citric acid, 43, 56	reactants, 80
Classical annular reactor (CAR), 163, 181	reaction setup, 79–81
Coated wall annular reactors, 326–328	substrate analysis, 80–81
Coated wall tubular reactors, 319–320	XPS and, 80–81
Cocatalysts, deposition of, 131–132	CST. See Continuous stirred tank
Combined adsorptive-photocatalytic reactors, 332–333	CTAB surfactant, 51
schematics of, 333f	D
Composite semiconductors, 129–131	DCA. See Dichloroacetaldehyde
Compound parabolic collectors (CPC),	Deactivation, 335
190, 194	Decay
carbaryl in, 209f	chemical, 3
comparison of, 203-204	physical, 3

B 1.1	1
Degradation rate	volumetric lamp model, 265f
of 4-CP, 268f	volumetric model, 263
of benzoic acid, 157f, 159f	Energy dispersive X-ray spectroscopy
of methanol, 305	(EDX), CREC and, 80–81
PCE, 240t	Enthalpy, 125
Degussa, 38	Environmental Protection Agency
Dichloroacetaldehyde (DCA), 310	(EPA), 298
Dichloroacetic acid, 203, 310	EPA. See Environmental Protection
Dichloroacetyl acid, 310	Agency
Dichloromethane, 148, 304	Epoxy resin, 324
Dichromate, 45	Equations. See also Radiative transfer
Dicyanomercury, 51	equation
Differential equations, 97	differential, 94, 97, 218, 235
Helmholtz, 218	Henry's law, 16
integro, 235	integro-differential, 235
ordinary, 94	Langmuir, 16
second-order partial, 218	mass conservation, 245
Diffusion approximation, 217	model, 263
Dimensionless asymmetry factor, 276	ordinary differential, 94
1,2-dimethoxybenzene, 77	pseudo-first-order rate, 12
Dimethylamine, 301	radiation transfer, 214–215
Direct reduction, 42	second-order partial differential, 218
lead, 56	substituting, 241
Discrete ordinates method (DOM), 211,	Escherichia coli, 206
215–216, 277	Ethanol, 44, 56, 302
Dissolved pollutants, 297, 300	mercury and, 50
Distribution heads, 248f	Ethylbenzene, 313
Distributive type, 163	Euler-type method, 213–214
comparison of, 164t	Europium-doped strontium borate, 306
DOM. See Discrete ordinates method	Europium-doped strontium
Doping techniques, 71	fluoroborate, 306
Doubly periodic wavy flow (DPWF), 173	Experimental apparatus, 5–8
DPWF. See Doubly periodic wavy flow	set up, 6f
Duran glass tubes, 206	Experimental run procedure, 7f
E	External type, 163
EDTA, 43	comparison of, 164t
lead and, 53	F
	FBR. See Fluidized bed tubular reactors
mercury and, 50 uranium and, 58	Feed tank, 262f
EDX. See Energy dispersive X-ray	Ferric ions, 74
spectroscopy	on oxidation rate of phenol, 84f
Eigenfunctions, 224	Ferrihydrite, 57
Eigenvalues, 224	Ferrous ions, 74
Electrolysis, 114	on oxidation rate of phenol, 84f
Emission, 237	Ferrous sulfate, 45
lamp model, 264–265	Fixed-bed flow-through reactor, 60
superficial model, 245	Flat plate photoreactor, 242f
- · r	L L L L

Flat plate reactors, 330	н
Floccules, 85	HDA. See Hexadecylamine
Flow homogenizer, 242f	Heat exchanger, 242f
Flow instability, 174	Helmholtz differential
Flow pattern, 155	equation, 218
slurry reactor, 156f	Hematite, 57, 74
turbulent vortex, 181f	Henry's law equation, 16
TVF, 181f	Henyey-Greenstein phase
WTWVF, 181f	function, 211, 276
FLUENT, 155, 168, 172	
Fluidized bed annular reactors, 326	Heterogeneous photocatalysis, 38 4-CC in, 283–284
Fluidized bed tubular reactors	
	4-CP in, 283–284
(FBR), 318–319	arsenic, 58–61
Fluoride, 59	chromium, 44–49
Formic acids, 44, 46, 56, 75, 86, 261, 263	defined, 2–3
mineralization, 254t	experimental setup, 275f
photolysis of, 259	hydroquinone in, 283–284
Four phase system, 150	kinetic results, 277–281
Fourier expansion, 221	laboratory reactor, 270–277
Fourier series, 220	lead, 53–57
Freundlich expression, 15	mechanistic pathways, 41–44
Freundlich isotherm, 14–16, 22, 25, 28	mercury, 49–53
Freundlich maximum adsorption	mobile windows mechanism, 274f
capacity, 15	phenol, 69–106
Freundlich model	pilot scale reactor, 281
linear form of, 25f	of PMA, 52
parameters, 26f	of PMC, 52
Freundlich photoadsorption, 20f	radiation absorption
Freundlich relationship, 15	and, 267–286
Fumaric acid, 86	radiation model, 283–284
2,5-furandione, 309	reaction mechanisms, 268f
	reaction scheme, 267–269
G	reactor model, 281–283
GAMBIT, 172	scaling up, 267–286
Gas inlet, 242f	scattering and, 267–286
Gas outlet, 242f	schematic representation of, 273
Gas scrubber, 242f	simplified diagram of, 39f
Gaussian distribution, 21	thermodynamical considerations,
Germicidal lamps, 261	41–44
Gibbs free energy change, 114	of titanium dioxide, 39f
for water splitting, 117f	treatment of metals in water
Global energy loss, 125	with, 37–62
Global reaction, for metallic mercury	uranium, 57–58
deposition, 50	variation, 284–286
Goethite, 57	Hexadecylamine (HDA), 325
Gold, 39	High-performance liquid
Graham condenser, 5	chromatograph (HPLC),
Granular ferric hydroxide, 57	7–8, 20, 80

Homogeneous photochemical reactors	Initial rates, 301
experiments, 266t	Innovative type, 165
kinetic model, 254–255	Inorganic reduction
kinetic results, 260	in heterogeneous photocatalysis, 72
laboratory, 255–260	organic oxidation and, 73
model equation, 263	In-scattering, 237
pilot scale, 261	Integro-differential equations, 235
predictions, 266t	Intrinsic kinetic constants, 93
radiation model, 263–266	Ion-implantation technique, 129
reaction scheme, 254-255	Iron
reactor model, 262–263	analysis, 80
scaling up of, 254–267	assisted photocatalytic mineralization
validation, 266–267	of phenol, 81–104
HPLC. See High-performance liquid	chloride, 59
chromatograph	disappearance rates of phenol and, 83f
Humic acid, 59	kinetic modeling, 92–104
hv, 2	oxidation of phenol and, 82–89
Hydrogen, 114	oxide, 57, 59
evolved, 125	in photocatalytic process, 74–78
peroxide, 74, 255, 261, 263	titanium dioxide and, 75
in water splitting, 132f	Iron hydroxide, 59
Hydroquinone, 20, 267, 275f	floccules, 85
concentrations, 279	Irradiation, 2
experimental concentrations, 280f	absorption, 3
in heterogeneous photocatalysis,	benzyl alcohol, 19f
283–284	phenol, 20f, 21f
predicted concentrations, 280f	titanium dioxide surface
Hydroxoaluminiumtricarboxymonoamide	modifications under, 8–10
phthalocyanine (AlTCPc), 48	1,3-isobenzofurandione, 309
3-hydroxybenzylaldehyde, 309	Isopropyl alcohol, 46
4-hydroxybenzaldehyde, 309	Isotherms, 12
	Freundlich, 14–16, 22, 25, 28
4-hydroxybenzyl alcohol, 309 Hydroxyl ions, 75	Langmuir, 13–14, 15, 22, 25, 28
	Redlich-Peterson, 16–18, 22, 25, 28
Hydroxyl radicals, 9, 38, 44, 72, 75, 238	
abundance of, 304	Temkin, 31–32
cathodic pathway and, 39–40	J
I	Jetter's method, 221
Imaging optical systems, 197f	jetter 5 metriou, 221
Immersion type, 163	K
comparison of, 164t	Ketones, 44
	Kinematic viscosity, 172
lamps, 171 Impregnation, 76	Kinetic modeling, 78
Incident Radiation, 264	aromatics, 96–98
Indirect reduction, 42, 43–44	carbon dioxide and, 98–104
lead, 56	of iron-assisted phenol oxidation,
Indoor air treatment, 298	92–104
Inequalities, 30	lumped acids, 98–104
mequanties, 50	ramped delas, 70 101

overall, 92–94	tube light reactor, 176
parameter estimation, 94–104	UV, 176, 242f, 248f
parameters, 24f, 26f	volumetric, 265f
of photocatalysis, 92–104	zinc/cadmium, 306
reaction network for, 96f	Langmuir equation, 16
reaction schemes, 101f	Langmuir isotherm theory,
scaling up and, 239-241	13–14, 15, 22, 25, 28
schematic representation of, 101f	asymptotic cases of, 29-31
series-parallel, 77, 279	Langmuir model
of unpromoted photocatalysis	linear form of, 23f
oxidation, 92–104	parameters, 24f
Kinetic reactors, in water purification,	Langmuir photoadsorption, 18f, 19f
154–155	Langmuir relationship, 13
Kinetic regimes, 153–154	Langmuir-Hinshelwood (LH)
Kinetic scheme, for PCE	model, 10–11, 78
degradation, 240t	Langmuir-type dependence, 153
	Lead, 39
L	direct reduction, 56
Laboratory reactors	EDTA and, 53
coordinate system for, 246f	heterogeneous photocatalysis,
description, 255-260, 270-277	53–57
experimental conversions, 248f	indirect reduction, 56
heterogeneous photocatalysis,	oxidative route to, 54
270–277	ozone and, 54–55
kinetics results, 247	titanium dioxide and, 54
model, 247–250, 270–277	Lead-doped barium silicate, 306
operating conditions, 243t–244t,	Levenberg-Marquardt method, 277
257t–258t, 271t–272t	LH model. See Langmuir-Hinshelwood
pilot scale, 247	model
predicted outlet conversions, 248f	Light intensity, 202
scaling up, 241–246, 255–260	Light sources, 305–307
schematic representation of,	Limiting efficiency, 123
242f, 256f	for single-band gap
Lambert-Beer type law, 210, 215	photocatalyst, 124f
Laminar Taylor vortex	Limiting values, 246
flow (LTVF), 173	Limonite, 74
time-dependent, 180	Linear coefficients, 23
Lamps	Liquid-solid catalytic reactions, 4
annular, 222–224	Local incident radiation, 214
argon, 306	distribution, 225f
contour, 265f	Local superficial rate of photon
emission model, 264–265	absorption (LSRPA), 234, 241, 249
germicidal, 261	values, 252
immersion type, 171	Local volumetric rate of photon
mercury plasma, 305	absorption (LVRPA), 200, 234, 256,
mercury plasma, 305	259, 269, 280
neon, 306	homogeneous value for, 201
sodium, 306	for polychromatic radiation, 277

profiles, 278f	Mercury medium-pressure lamp, 5
titanium dioxide and, 201	Mercury plasma lamps, 305
LSRPA. See Local superficial rate of	Metalloids, treatment of, in water by
photon absorption	heterogeneous photocatalysis,
LTVF. See Laminar Taylor vortex flow	37–62
Lumped acids, kinetic modeling and,	Metals
98–104	nitrides, 139
LVRPA. See Local volumetric rate of	oxynitrides, 139
photon absorption	reduction potentials, 41f, 73f
	treatment of, in water by
M	heterogeneous photocatalysis,
Macrokinetic studies	37–62
important factors in, 151t–152t	Methanol, 7, 44, 56, 137, 324
water purification, 150–161	degradation of, 305
Magnetic stirrer, 5	Method of initial rates, 301
Magnetite, 57, 74	Methyl benzoic acid, 309
Maleic acid, 75, 76, 86	Methyl tert-butyl-ether, 301, 319, 321
concentration, 87f	Methylbenzaldehydes, 309
phenols and, 77	Methylmercury, 51
Manganese, 39	Micro steady-state approximation
Marquardt's percent standard deviation	(MSSA), 254
(MPSD), 5	Microphotoelectrodes, 118
Marshak boundary condition, 219, 224	Mobile windows mechanism, 274f
Mass conservation equation, 245	Model pollutant analysis, 80
Mass flowmeter, 242f	Modeling dye degradation, 212–214
Mass transfer, 171, 240	Mole balance, 11
Mass transport	Monochlorobenzene, 170
air treatment, 304–305	Monochromatic incident radiation, 259
external, 304	Monochromatic radiation, 277
internal, 304	Monochromatic specific intensities, 259
MCM. See Monte Carlo method	Monolith tubular reactor, 323
Mechanistic pathways, heterogeneous	Monte Carlo method (MCM), 215–217
photocatalysis, 41–44	MPSD. See Marquardt's percent
Merbromin, 52	standard deviation
Mercuric chloride, 50	MSSA. See Micro steady-state
Mercurochrome, titanium dioxide	approximation
and, 52	Muconic acid, 77
Mercury, 39, 47	Multiannular photocatalytic
in agricultural pesticides, 49 EDTA and, 50	reactor, 242f
ethanol and, 50	Multiple tube reactor, 166–170, 180, 183
	mixing inside, 169f
global reaction for, 50	schematic diagram of, 175f
heterogeneous photocatalysis, 49–53 salts, 50	titanium dioxide in, 166
SDS and, 50–51	N
time profiles of, 50	Neon lamps, 306
titanium dioxide and, 49, 51	Nickel-oxide-doped glass, 306
toxicity of, 51	Niobates, in water splitting, 137–138
toricity of, of	1 100 atco, in water spiriting, 107 100

Nitric oxides (NOx), 299, 300, 322, 326	of o-DHB, 89-90, 95t
as target pollutant, 312	organic carbon and, 100f
Nitrides, in water splitting, 139	of p-DHB, 90
Nitrogen, 138	phenol, 83f
Nonimaging optical systems, 197f	of phenol with ferric ions, 84f
Nonuniform coating, 245	of phenol with ferrous ions, 84f
Novel kinetic reactor, 154–155	of phenol with iron, 82–89
NOx. See Nitric oxides	predicted profiles for, 102f
	rates of phenol, 84f
0	reaction, 42
OC. See Organic carbon	Oxidative removal, 42, 44–45
Occupational and Safety Administration (OSHA), 308	Oxygen coverage, 11–12
ODE. See Ordinary Differential Equation	supply, 275f
o-DHB. See Ortho-dihydroxybenzene	titanium dioxide and, 39
Optical properties, 210–212	in water splitting, 132f
Optical systems	Oxynitrides, in water splitting, 139
CPC, 197f	Ozone
imaging, 197f	lead and, 54–55
nonimaging, 197f	ROS and, 55
Optimal catalyst loading, 158–160	-100 3, 00
OQY. See Overall quantum yield	P
Orange II, 178, 181	P1 approximation, 217–226
decomposition, 182t	applicability of, 225–226
Ordinary Differential Equation	Packed bed annular reactors, 328–329
(ODE), 94	Packed bed reactors (PBR), 300, 320-321
Organic carbon (OC), 99	configuration of, 321f
oxidation and, 100f	Palladium, 39
Organic oxidation	Parabolic trough concentrators (PTC),
in heterogeneous photocatalysis, 72	192, 193f, 194
inorganic reduction and, 73	coordinate systems, 222f
Organo-silicone compounds, 298	flux concentration distribution in, 223f
Ortho-dihydroxybenzene (o-DHB), 76	geometries, 205f
concentration profiles, 87f	reaction rate optical factor and, 203f
oxidation of, 89-90, 95t	solutions for, 221–222
predicted profiles of, 97f	Para-dihydroxybenzene (p-DHB), 76
OSHA. See Occupational and Safety	oxidation of, 90
Administration	predicted profiles of, 97f
Outdoor air treatment, 299	Parameter estimation, 94–104
Overall quantum yield (OQY), 307	constrained relationships for, 94-95
Oxalic acids, 44, 86	Particulate systems, 118–119
degradation of, 205f	Patents
in solar reactors, 205f	air treatment, 295–296
Oxidation, 27	distribution of, 296f
of 1,4-benzoquinone, 90, 96t	per year, 296f
arsenic, 60	titanium dioxide, 295
estimated parameters, 103t	PBR. See Packed bed reactors
kinetic modeling, 92–104	PCE. See Perchloroethylene

p-DHB. See Para-dihydroxybenzene	batch reactors, 314–315
Perchloroethylene (PCE), 313	composite, 131f
Perhydroxyl radicals, 75	composite semiconductors, 129-131
Permanganate, 59	continuous, one-pass flow reactors, 315
Permeable layer annular reactors,	conversion rates, 153
329–330	cost of, 70–71
Permeable layer tubular reactors,	design challenges in, 161-183
325–326	developing, 127–142
Perspex, 176	doping, 71
Persulfate, 120	dual, 121f
PFR. See Plug flow reactor	estimated parameters, 103t
pH, 153	improving, 71–72
Phenol, 6	inorganic reduction, 72
CREC and, 78	iron assisted, of phenol, 81-104
disappearance rates of, 83f	iron in, 74–78
experimental values, 20f, 21f	kinetic modeling, 92–104
ferric ions and oxidation rate of, 84f	large scale, 161–183, 303
ferrous ions and oxidation rate of, 84f	light sources, 305–307
heterogeneous photocatalysis, 69–106	mass transport, 304–305
iron and oxidation of, 82–89	metal nitrides in, 139
iron assisted photocatalytic	metal oxynitrides in, 139
mineralization of, 81–104	modes of operation, 314–315
irradiation time, 20f, 21f	multiple tube reactors, 166–170
kinetic modeling, 78, 92–104	organic oxidation, 72
mineralization of, 69–106	phenol, 69–106
oxidation rates, 83f	reaction kinetics, 301–304
photoadsorption, 25–26	reactor comparison, 164t
predicted profiles of, 97f	reactors for air treatment, 316–333
Phenolic intermediates, 77	recirculation systems, 314–315
Phenylmercury chloride (PMC), 51	scaling up, 234–286
photocatalysis of, 52	semiconductor alloys, 131
Philips Lighting, 176	series-parallel reaction mechanism
Photoadsorption, 3	for, 90–92
center, 3	surface modification by deposition
determination, 4, 10–18	of cocatalysts, 131–132
discussion, 21-28	surface modification schematic
equilibrium constant, 13	diagram, 132f
Freundlich, 20f	Taylor vortex reactor, 171–174
Langmuir, 18f, 19f	tube light reactor, 170–171
phenol, 25–26	unpromoted, 96t
of polycrystalline semiconductor	for water splitting, 126–142
oxide, 4–5	Photocatalytic plate, 242f
reaction mechanism, 26–28	Photocatalytic reaction, chromium,
Photo-Cat, 150	45–46
Photocatalysis, 5	Photocatalytic reduction, chromium,
air treatment, 300–307	45, 47
band structure of, 130f, 131f	Photocatalytic thermodynamic
band-gap engineering, 128-131	efficiency factor (PTEF), 334

Photocatalytic wall reactor	PMC. See Phenylmercury chloride
laboratory reactor, 241–246	Pn approximation, 217
radiation absorption and, 238-254	Polychromatic radiation, 277
radiation reflection and, 238-254	Polycrystalline semiconductor oxide,
scaling up of, 238-254	photoadsorption of, 4-5
Photoconversion efficiency, 125	Polymercury acetate (PMA), 51
Photocorrosion, 140	photocatalysis of, 52
Photo-CREC Water-II reactor,	Polyometalates, 59
79f, 82, 224	Potassium ferrioxalate reaction, 260
experiments in, 81	Powder layer tubular reactors, 316–318
in water purification, 165	PQY. See Primary quantum yield
Photo-CREC-air reactor, 329	Primary quantum yield (PQY), 307
Photodegradation, of benzyl	Process gasses, 297, 299–300
alcohol, 18	2-propanol, 44, 56
Photoelectrochemistry	Pseudo-first-order kinetics, 15
cell diagram, 117f	Pseudo-first-order rate constant, 12
of water splitting, 115–125	Pseudo-first-order rate equation, 12
Photo-fenton, 190, 215	PTC. See Parabolic trough
Photon absorption	concentrators
effects, 3	PTEF. See Photocatalytic
rate, 235f	thermodynamic efficiency factor
reaction rate and, 281t	Purifics Environmental Canada
Photon distribution, characterization	Technologies, 150
of, 236f	Pyrex, 5, 175, 262f
Photon mol, 200	
Photoreactivity, 30	Q
Photoredox, 58	Quantum yields (QY), 123, 125, 306–307
Photoreduction, 73	overall, 307
Physical decay, 3	primary, 307
Pilot scale reactor, 247	QY. See Quantum yields
coordinate system for, 251t	~ ~
experimental conversion for, 253f	_
experimental device, 282f	R
heterogeneous photocatalysis, 281	Radiation
homogeneous, 261	emitting system, 273, 275f
operating conditions, 257t–258t,	field, 250–252
271t-272t	intensity, 200–203
predicted outlet conversions for, 253f	monochromatic, 277
scaling up, 247	polychromatic, 277
schematic representation of,	properties, 237
248f, 282f	Radiation absorption, 190
Planck's constant, 200	heterogeneous photocatalytic reactors
Plasma-driven packed bed reactor,	and, 267–286
321–322	scaling up with, 238-254, 267-286
Platinization, 58	Radiation model, homogeneous reactor,
Platinum, 39	263–264
Plug flow reactor (PFR), 315, 327	Radiation reflection, scaling up
PMA. See Polymercury acetate	with, 238–254

Radiation transfer	ROS. See Reactive oxygen species
equation, 214–215	RROF. See Reaction rate optical factor
in solar reactors, 210–217	RTE. See Radiative transfer equation
Radiative transfer equation (RTE), 191,	Runge-Kutta method, 329
214–215, 218, 235, 276	
boundary conditions for, 236	S
radiation propagation and, 236	Salicylic acid, 43, 73
solutions of, 215–217, 284	Sampling device, 242f
Radiometers, 264	Sampling valve, 275f
Ray tracing technique, 245, 263	SBS. See Sick-building syndrome
Reaction kinetics, 301–304	Scaling up
Reaction mechanism	experiments, 266t
heterogeneous photocatalyst	heterogeneous photocatalytic
reactors, 268f	reactors, 267–286
photoadsorption, 26-28	of homogeneous photochemical
Reaction rate optical factor (RROF), 202	reactors, 254–267
for parabolic trough solar	kinetic model for, 239-241
photocatalytic reactor, 203f	kinetic results, 260
Reaction schemes	kinetics results, 247
kinetic models and, 101f	laboratory reactor, 241-246, 255-260
scaling up and, 239-241	methodology, 239f
Reaction setup, CREC, 79–81	photocatalytic reactors, 234–286
Reaction-specific parameters, 162	photocatalytic wall reactor, 238-254
Reactive oxygen species (ROS), 44, 49	pilot scale reactor, 247, 261, 281
ozone and, 55	predictions, 266t
Reactors. See specific types	with radiation absorption, 238-254
Reactor-specific parameters, 162	radiation model, 263-266
Recirculation systems, 314–315	with radiation reflection, 238-254
Recombination centers, 85	reaction scheme and, 239-241
Recycle pump, 242f	reactor model, 247-250, 262-263,
Redlich-Peterson isotherm, 16–18,	281–283
22, 25, 28	validation, 253, 266-267, 284-286
Redox reagents, 120	Scattering/absorbing medium, 210
Redox shuttle, 121f	heterogeneous photocatalytic reactors
Reduction, 27	and, 267–286
Reduction potentials	SciFinder Scholar, 295
of metal ions, 73f	target pollutants in, 307–314
metallic couples, 41f	SDS, mercury and, 50–51
titanium dioxide and, 73f	Sealants, 298
Refractive index, of titanium	Second-order partial differential
dioxide, 167	equations, 218
Reversible redox couple, 120	Self-cleaning surfaces, 294f
Reynolds number, 181f, 281	Semiconductors, 120
Rhodium, 39	alloys, 131
Riser Reactor, 319	band-gap energy of, 126f
RMSE. See Root mean square error	composite, 129–131
Root mean square error (RMSE),	sulfide, 140
253, 286	Series-parallel kinetic model, 77, 279

Series-parallel reaction mechanism	Solar radiation, 106
detailed, 91f	beam, 221f
for photocatalysis, 90–92	characteristics of, 191
Shielding effect, 153	conversion, 114
Sick-building syndrome (SBS), 298	spectral, 122f
Siderite, 74	
Silver, 39	titanium dioxide and, 191
	Solar spectrum
Singly periodic wavy vortex flow (SPWVF), 173	energy distribution in, 122t irradiance, 122f
Sink terms, 237	water splitting and, 121–125
Slurry reactor (SR), 150	Sol-gel preparation, 76, 196, 207f
comparison of, 164t	Solid phase dispersed (SPD), 161
distributive, 163, 164t	Solid phase stationary (SPS), 161–162
<u> </u>	Source terms, 237
external, 163, 164t	
flow pattern inside, 156f	SPD. See Solid phase dispersed Spectral specific intensity, 237
immersion, 163, 164t	
innovative, 165 regimes for, 156–161	Spherical coordinate system, 264
solar, 191, 195	SPS. See Solid phase stationary
	SPWVF. See Singly periodic wavy vortex flow
type, 163 Sodium lamps, 306	SR. See Slurry reactor
Sodium lamps, 306 Sodium meta-bisulfite, 45	ST-1000, 179
Sodium sulfite, 46	
Sodium thiosulfate, 45	Steady-state conditions, 4
Solar photocatalytic reactors, 190–210	Substituting equation, 241 Substrate, 30
annular lamp reactor, 222–224	Substrate analysis, 80–81
comparisons, 203–206	Sulfides, 120
concentrating, 191	semiconductors, 140
coordinate system, 246f	in water splitting, 140–142
fixed, 191	Sulfites, 120
geometries, 205f	Sulfur anions, 137
modeling dye degradation, 212–214	Sulfur dioxide, 45
Monte Carlo method	Sunlight, 113–114
and, 215–217	Suns, 192
nonconcentrating, 191	Superficial emission model, 245
optical properties, 210–212	Superhydrophilicity, 9
oxalic acid in, 205f	Superoxide radicals, 85
P1 approximation, 217–226	Surface modifications, 8–10
parabolic trough, 203f	by deposition of cocatalysts, 131–132
radiation intensity, 200–203	Surface reactions, 301
radiation transfer equation	Surface recombination, 27
in, 214–215	Surface roughening, 168
radiation transfer in, 210–217	burrace roughering, roo
reaction rates, 193, 200–203	T
RTE solutions, 215–217	Tantalates, in water splitting, 137–138
slurry, 191, 195	Target pollutants
thin film fixed bed, 194f	in air purification, 307–314
types, 191–196	BTEX, 308–309
V 1	•

mixtures, 312–314	coating, 299
NOx, 312	doped, 106
trichloroethylene, 309-312	Fe-doped, 85
Taylor number, 174	heterogeneous photocatalysis at, 39f
Taylor series expansion, 280	immobilized on glass beads, 60
Taylor vortex flow, 180f	iron and, 75
flow pattern, 181f	lead and, 54
Taylor Vortex photocatalytic reactor	LVRPA and, 201
(TVR), 174	mercurochrome and, 52
analysis of, 179	mercury and, 49, 51
experimental set-up of, 177f	in multiple tube reactors, 166
schematic view of, 176	nanocrystalline, 46
Taylor vortex reactor, 171–174	oxygen and, 39
flow configuration of, 173f	patents on, 295
Taylor-Couette flow, 171, 172, 179	photoadsorption determination,
instability, 174	10–18
Taylor-Couette geometry, 172	platinization of, 58
Taylor-Couette vortices, 172	polar, 303
t-butanol, 56	reduction potentials and, 73f
TC. See Tubular collectors	refractive index of, 167
TCD. See Thermal conductive detector	scientific manuscripts on, 294f
TDSVE model, 263	in SciFinder Scholar, 295
Temkin equilibrium absorption	solar radiation and, 191
constant, 32	superhydrophilicity of, 9
Temkin isotherm, 31–32	surface modifications under
Temkin model, 16	irradiation, 8–10
Tetracyanomercurate, 51	suspension, 319
Thallium, 39	thermodynamic ability of, 42
1,2,3-THB. See 1,2,3-trihydroxybenzene	in water splitting, 136–137
Thermal conductive detector (TCD), 326	zeolite-supported, 304
Thermal plasma, 76	TLR. See Tube light reactor
Thermodynamical considerations	TOC profiles, 88, 285
heterogeneous photocatalysis, 41–44	TOC Shimadzu analyzer, 8
of titanium dioxide, 42	Toluene, 301, 313, 328
Thermohygrometer, 242f	Total internal reflection, 168
Thermostatic bath, 242f, 275f	Toxicity
Thiele modulus, 305	of arsenic, 58
Thin film fixed bed reactor, 194f	of mercury, 51
Time accurate solutions, 172	Transition metal oxides, 138
Time-dependent Taylor vortex	Trichloroethylene, 148, 267,
flow, 180f	298, 313–314
TiO ₂ . See Titanium dioxide	in air purification, 309–312
Titanates, 321	Trichloropropene (TCP), 313
in water splitting, 136–137	1,2,3-trihydroxybenzene (1,2,3-THB),
Titanium dioxide (TiO ₂), 2, 5, 20, 25, 28	76, 92
anodically biased, 43-44	Tube light reactor (TLR), 170–171
arsenic and, 59–60	lamps in, 176
chromium and 48	schematic diagram of 176f

Tubular collectors (TC), 195	W
Tubular reactors, 219	Waste tank, 262f
for air treatment, 316–326	Water, 10
coated wall, 319-320	heterogeneous photocalysis, 37–62
fluidized bed, 318-319	oxidation reaction, 42
illumination of, 221f	tank, 262f
monolith, 323	treatment of metals in, 37-62
permeable layer, 325–326	treatment patents, 296f
powder layer, 316–318	Water purification, 147–150
schematic view of, 318f	catalyst immobilization
spectral volumetric absorbed	in, 177–178
power in, 223f	catalyst in, 177
Tubular receivers, CPC, 197–198	circulation rates in, 153
Turbulent vortex flow (TVF), 173	conversion rates in, 153
flow pattern, 181f	experimental details, 174-183
TVF. See Turbulent vortex flow	experimental procedure, 178–179
TVR. See Taylor Vortex photocatalytic	experimental setup, 178
reactor	kinetic reactors in, 154–155
	large scale, 161–183
U	macrokinetic studies, 150–161
Ultrafine catalysts, 162	model analysis, 178
Unit mass, 23, 26	model component, 178
benzyl alcohol, 24f	multiple tube reactor, 166–170
Uranium	photo-CREC Water-II reactor
EDTA and, 58	in, 165
heterogeneous photocatalysis, 57-58	reactor comparison, 164t
UV illumination, 8–9	reactors, 174–177
UV lamps, 176, 242f, 248f	slurry system regimes, 156-161
UV light-electronic phase, 150	Taylor vortex reactor, 171–174
UV radiometer, 204	tube light reactor, 170–171
,	Water splitting, 113–115
V	configurations, 116–119
Valence band holes, 38	energy requirements, 119–121
Velocity profile, 249	Gibbs free energy change
Velocity vectors, 169f	for, 117f
Ventilation, 298	hydrogen in, 132f
Visible light, 333–334	material requirements
VOCs. See Volatile organic compounds	for, 126–127
Volatile organic compounds	metal nitrides in, 139
(VOCs), 298	metal oxynitrides in, 139
Volumetric emission model, 263	niobates in, 137–138
Volumetric flow rate, 162	oxygen in, 132f
Volumetric lamps, 265f	photocatalysts for, 126–142
Vorontsov's model, 302	photoelectrochemistry
VTC. See V-trough collector	of, 115–125
V-trough collector (VTC), 205	principle of, 116f
geometries, 205f	schematic diagram, 120f
,	

solar spectrum and, 121-125 tantalates in, 137-138 titanates in, 136-137 titanium dioxide in, 136-137 transition metal oxides in, 138 Wavelength-dependent asymmetry parameters, 211 Wavelength-dependent constants, 218 Weakly turbulent wavy vortex flow (WTWVF), 173 flow pattern, 181f Weisz modulus, 305 WHO. See World Health Organization Wood's glass, 306 World Health Organization (WHO), 44, 49, 57 WTWVF. See Weakly turbulent wavy vortex flow

X
XPS. See X-ray photoelectron
spectroscopy
X-ray diffraction (XRD), 56
X-ray photoelectron spectroscopy
(XPS), 56
CREC and, 80–81
XRD. See X-ray diffraction

Z Zeolite, 304 Zero-order reaction rates, 88 Zinc/cadmium lamps, 306 Zirconates, 321 ZnCl₂, 51 ZnO, 141 ZnS, 141